NPGLM: A Non-Parametric Method for Temporal Link Prediction

نویسندگان

  • Sina Sajadmanesh
  • Jiawei Zhang
  • Hamid R. Rabiee
چکیده

In this paper, we try to solve the problem of temporal link prediction in information networks. This implies predicting the time it takes for a link to appear in the future, given its features that have been extracted at the current network snapshot. To this end, we introduce a probabilistic nonparametric approach, called Non-Parametric Generalized Linear Model (NP-GLM), which infers the hidden underlying probability distribution of the link advent time given its features. We then present a learning algorithm for NP-GLM and an inference method to answer time-related queries. Extensive experiments conducted on both synthetic data and real-world Sina Weibo social network demonstrate the effectiveness of NP-GLM in solving temporal link prediction problem vis-à-vis competitive baselines.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Predictive Ability of Statistical Genomic Prediction Methods When Underlying Genetic Architecture of Trait Is Purely Additive

A simulation study was conducted to address the issue of how purely additive (simple) genetic architecture might impact on the efficacy of parametric and non-parametric genomic prediction methods. For this purpose, we simulated a trait with narrow sense heritability h2= 0.3, with only additive genetic effects for 300 loci in order to compare the predictive ability of 14 more practically used ge...

متن کامل

Regression Modeling for Spherical Data via Non-parametric and Least Square Methods

Introduction Statistical analysis of the data on the Earth's surface was a favorite subject among many researchers. Such data can be related to animal's migration from a region to another position. Then, statistical modeling of their paths helps biological researchers to predict their movements and estimate the areas that are most likely to constitute the presence of the animals. From a geome...

متن کامل

A Link Prediction Method Based on Learning Automata in Social Networks

Nowadays, online social networks are considered as one of the most important emerging phenomena of human societies. In these networks, prediction of link by relying on the knowledge existing of the interaction between network actors provides an estimation of the probability of creation of a new relationship in future. A wide range of applications can be found for link prediction such as electro...

متن کامل

Link Prediction using Network Embedding based on Global Similarity

Background: The link prediction issue is one of the most widely used problems in complex network analysis. Link prediction requires knowing the background of previous link connections and combining them with available information. The link prediction local approaches with node structure objectives are fast in case of speed but are not accurate enough. On the other hand, the global link predicti...

متن کامل

Comparison of Gene Expression Programming (GEP) and Parametric and Non-parametric Regression Methods in the Prediction of the Mean Daily Discharge of Karun River (A case Study: Mollasani Hydrometric Station)

Nowadays, the prediction of river discharge is one of the important issues in hydrology and water resources; the results of daily river discharge pattern could be used in the management of water resources and hydraulic structures and flood prediction. In this research, Gene Expression Programming (GEP), parametric Linear Regression (LR), parametric Nonlinear Regression (NLR) and non-parametric ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1706.06783  شماره 

صفحات  -

تاریخ انتشار 2017